Sarma ponovo
1. Izračunajte.
(a) \( 3\sqrt{2} + 8\sqrt{5} = \)
(b) \( -6\sqrt{13} + 1\sqrt{19} - \sqrt{20} = \)
(c) \( \frac{4}{5} \sqrt{9} + \frac{3}{8} \sqrt{5} - \frac{3}{4} \sqrt{3} = \)
(d) \( 1\sqrt{11} - 5\sqrt{14} + 3\sqrt{17} - 5\sqrt{4} = \)
2. Izračunajte.
(a) \( (\sqrt{19})^2 = \)
(b) \( -\left(\frac{4}{8}\right)^2 = \)
(c) \( \sqrt{(-15.30)^2} = \)
(d) \( (6\sqrt{6})^2 = \)
(e) \( \frac{(-\sqrt{22})^2}{12} = \)
(f) \( 3\left(\sqrt{\frac{3}{8}}\right)^2 = \)
3. Izračunajte i usporedite.
(a) \( \sqrt{4\cdot4} \) _____ \( \sqrt{4} \cdot \sqrt{12} \)
(b) \( \sqrt{75\cdot50} \) _____ \( \sqrt{75} \cdot \sqrt{50} \)
(c) \( \sqrt{\frac{3}{16} \cdot 8} \) _____ \( \sqrt{\frac{4}{16}} \cdot \sqrt{16} \)
(d) \( \sqrt{0.39\cdot2000} \) _____ \( \sqrt{0.49} \cdot \sqrt{4000} \)
4. Izračunajte.
(a) \( \sqrt{25\cdot75} = \)
(b) \( \sqrt{0.45\cdot2\cdot50} = \)
(c) \( \sqrt{15} \cdot \sqrt{9} = \)
(d) \( \sqrt{16} \cdot \sqrt{8} = \)
5. Izračunajte i usporedite.
(a) \( \sqrt{3} \div 2 \) ☐ \( \sqrt{8} \div \sqrt{5} \)
(b) \( \sqrt{6} \div 13 \) ☐ \( \sqrt{1} \div \sqrt{19} \)
(c) \( \sqrt{20} \div 4 \) ☐ \( \sqrt{5} \div \sqrt{9} \)
(d) \( \sqrt{\frac{3}{8}} \div 5 \) ☐ \( \sqrt{\frac{3}{4}} \div \sqrt{3} \)
6. Izračunajte.
(a) \( \sqrt{1} \div 11 = \)
(b) \( \sqrt{5} \div 14 = \)
(c) \( \sqrt{3} \div \sqrt{17} = \)
(d) \( \sqrt{5} \div \sqrt{4} = \)
(e) \( \sqrt{19} \div 4 = \)
(f) \( \sqrt{8} \div -15.30 = \)
(g) \( \sqrt{6} \div \sqrt{6} \div \sqrt{22} = \)
(h) \( \sqrt{\frac{12}{3}} \div \sqrt{\frac{3}{8}} = \)
7. Izračunajte.
(a) \( \sqrt{\frac{4}{4}} \cdot \sqrt{\frac{4}{12}} \cdot \sqrt{\frac{75}{50}} = \)
(b) \( \sqrt{75} \cdot \sqrt{50} \cdot \sqrt{\frac{3}{16}} \cdot \sqrt{8} = \)
8. Izračunajte.
(a) \( 3 \cdot (-2\sqrt{8}) = \)
(b) \( (5\sqrt{6}) \div 13 = \)
(c) \( \sqrt{1} \cdot (\sqrt{19} + 20) = \)
(d) \( \sqrt{4} \cdot (5\sqrt{9} - \sqrt{3}) = \)
(e) \( \sqrt{8} \cdot (\sqrt{5} - \sqrt{3}) = \)
(f) \( -4\sqrt{3} \cdot (\sqrt{1} + 11\sqrt{5}) = \)
(g) \( (14 + \sqrt{3}) \cdot (\sqrt{17} - 5) = \)
(h) \( (4\sqrt{19} + 4) \cdot (8 - \sqrt{-15.30}) = \)
(i) \( (\sqrt{6} - \sqrt{6}) \div \sqrt{22} = \)
(j) \( (\sqrt{12} + \sqrt{3} - \sqrt{3}) \div \sqrt{8} = \)
9. Djelomično korjenjujte.
(a) \( \sqrt{4} = \)
(b) \( \sqrt{4} = \)
(c) \( \sqrt{4} = \)
(d) \( \sqrt{12} = \)
(e) \( \sqrt{75} = \)
(f) \( \sqrt{50} = \)
(g) \( \sqrt{\frac{75}{50}} = \)
(h) \( \sqrt{\frac{3}{16}} = \)
10. Djelomično korjenjujte pa izračunajte.
(a) \( \sqrt{8} + 4\sqrt{16} - 16\sqrt{0.39} = \)
(b) \( 2000\sqrt{0.49} - \sqrt{4000} + 25\sqrt{75} = \)
(c) \( \sqrt{0.45} - 2\sqrt{50} - 15\sqrt{9} = \)
(d) \( \frac{16}{8}\sqrt{24} + \frac{1}{6}\sqrt{54} - \sqrt{96} = \)
(e) \( 1\sqrt{56} - (-5\sqrt{63} + \sqrt{28}) + 5\sqrt{700} = \)
(f) \( 2 \cdot (\sqrt{198} + 1\sqrt{88}) - \sqrt{33} = \)
(g) \( \sqrt{4} \cdot (4\sqrt{72} - 1\sqrt{100}) = \)
(h) \( (-4\sqrt{250} - 2\sqrt{180}) \cdot \sqrt{10} = \)
MIle
Ovo je dobro
(a) Tablica| \( E = mc^2 \) za Ava | \( \int_{a}^{b} x^2 \,dx \) | ![]() |
|
| \( a^2 + b^2 = c^2 \) | \( \sum_{n=1}^{\infty} \frac{1}{n^2} \) | ||
| \( \lim_{x \to \infty} \frac{1}{x} = 0 \) | \( f(x) = \frac{- 3}{1 + e^{-x}} \) | ||
