Boki

Powers with base 10
Consider the expression: \[ f(x) = \left( \frac{{3x^2 - 2x + 1}}{{x^3 + 5x^2 + 7x + 3}} \right)^2 \] We want to find the derivative of \( f(x) \) with respect to \( x \). Derivation: Using the chain rule of differentiation, we can find the derivative of \( f(x) \) step by step. Let's denote the numerator and denominator of the fraction as \( u(x) \) and \( v(x) \) respectively: \[ u(x) = 3x^2 - 2x + 1 \] \[ v(x) = x^3 + 5x^2 + 7x + 3 \] Applying the chain rule, we get: \[ f'(x) = 2 \left( \frac{{u(x)}}{{v(x)}} \right) \cdot \frac{{u'(x) \cdot v(x) - u(x) \cdot v'(x)}}{{v(x)^2}} \] where \( u'(x) \) and \( v'(x) \) are the derivatives of \( u(x) \) and \( v(x) \) respectively. Now, we can find \( u'(x) \) and \( v'(x) \) as follows: \[ u'(x) = 6x - 2 \] \[ v'(x) = 3x^2 + 10x + 7 \] Plugging these values back into the formula for \( f'(x) \), we get: \[ f'(x) = 2 \left( \frac{{3x^2 - 2x + 1}}{{x^3 + 5x^2 + 7x + 3}} \right) \cdot \frac{{6x - 2 \cdot (x^3 + 5x^2 + 7x + 3) + (3x^2 + §§V0(18,41,1)§§ x + 7)}}{{(x^3 + 5x^2 + 7x + 3)^2}} \] This is the derivative of \( f(x) \) with respect to \( x \) in its simplified form. §§V1(1,44,1)§§ \begin{flalign*} &(a) \quad \text{Berechne: } \int_{0}^{1} \frac{x^ 12 - 1}{\ln x} \, \mathrm{d}x && \\ &(b) \quad \text{Löse die Gleichung: } \sqrt{ 6 x-1}+\sqrt[ 9 ]{ 2 x-5}= 12 && \\ &(c) \quad \text{Berechne: } \frac{ 8 }{5} \times \left(\frac{ 12 }{4} + \frac{5}{6}\right) && \\ &(d) \quad \text{Löse die Ungleichung: } 4 x + 5 \geq 12 x - 2 && \\ &(e) \quad \text{Berechne: } \left(\frac{ 3 }{4}\right)^ 2 \cdot \left(\frac{ 6 }{ 12 }\right)^ 6 && \\ &(f) \quad \text{Löse die Gleichung: } \frac{ 2 x}{ 9 } - \frac{5}{ 6 } = \frac{x+4}{6} && \\ &(g) \quad \text{Berechne: } \sqrt{16} \cdot \left(\frac{ 8 }{ 6 }\right)^{- 8 } && \\ &(h) \quad \text{Löse das Gleichungssystem:} \\ &\quad\quad \begin{cases} 6 x - 12 y = 5 \\ 4x + y = 2 \end{cases} && \\ &(i) \quad \text{Berechne: } \frac{5}{8} - \left(\frac{1}{ 3 } - \frac{ 4 }{5}\right) && \\ &(j) \quad \text{Löse die Gleichung: } 8 ( 9 x - 1) = 4x + 5 &&\\ &(a12) \quad \text{Berechne: } \frac{ 6 }{4} \cdot \left(\frac{5}{6} + \frac{7}{8}\right) && \\ &(b12) \quad \text{Löse die Gleichung: } \frac{ 2 x- 9 }{4} - \frac{ 3 x+2}{ 4 } = \frac{x+1}{ 12 } && \\ &(c12) \quad \text{Berechne: } \sqrt[ 6 ]{\frac{ 2 7}{64}} && \\ &(d12) \quad \text{Löse das Gleichungssystem:} \\ &\quad\quad \begin{cases} 8 x + 9 y = 8 0 \\ 4x - y = 5 \end{cases} && \\ &(e 5 4 ) \quad \text{Berechne: } \left(\frac{5}{6}\right)^{- 4 } \cdot \left(\frac{7}{10}\right)^{- 5 } && \\ &(f12) \quad \text{Löse die Ungleichung: } \frac{ 8 x- 8 }{ 3 } > \frac{x+ 2 }{4} && \\ &(g12) \quad \text{Berechne: } \log_{ 2 } 8 + \log_{\frac{ 6 }{ 4 }} 16 && \\ &(h12) \quad \text{Löse die Gleichung: } \sqrt{ 4 x+ 2 } = \sqrt{ 6 x- 2 } && \\ &(i12) \quad \text{Berechne: } \sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{ 3 }\right) && \\ &(j12) \quad \text{Löse das Gleichungssystem:} \\ &a1) \quad \text{Berechne: } \frac{ 12 }{4} \cdot \left(\frac{5}{6} + \frac{7}{8}\right) && \\ &a2) \quad \text{Löse die Gleichung: } \frac{ 6 x- 9 }{4} - \frac{ 6 x+ 6 }{ 8 } = \frac{x+ 4 }{ 3 } && \\ &a3) \quad \text{Berechne: } \sqrt[3]{\frac{ 4 7}{64}} && \\ &a4) \quad \text{Löse das Gleichungssystem:} \\ &\quad\quad \begin{cases} 6 x + 9 y = 5 0 \\ 4x - y = 5 \end{cases} && \\ &a5) \quad \text{Berechne: } \left(\frac{5}{6}\right)^{-2} \cdot \left(\frac{7}{10}\right)^{-1} && \\ &a6) \quad \text{Löse die Ungleichung: } \frac{ 4 x- 3 }{ 6 } > \frac{x+ 8 }{4} && \\ &a7) \quad \text{Berechne: } \log_{2} 8 + \log_{\frac{ 2 }{ 6 }} 16 && \\ &a8) \quad \text{Löse die Gleichung: } \sqrt{ 6 x+ 9 } = \sqrt{ 6 x- 6 } && \\ &a9) \quad \text{Berechne: } \sin\left(\frac{\pi}{4}\right) \cdot \cos\left(\frac{\pi}{6}\right) + \tan\left(\frac{\pi}{ 9 }\right) && \\ &a10) \quad \text{Löse das Gleichungssystem:} \\ &\quad\quad \begin{cases} 2 x - y + z = 4 \\ x + 9 y - 8 z = - 3 \\ 12 x + y + 4z = 9 \end{cases} && \\ &(b1) \quad \text{Berechne: } \frac{5}{8} \cdot \left(\frac{ 6 }{4} + \frac{ 2 }{5}\right) && \\ &(b2) \quad \text{Löse die Gleichung: } 8 x^2 + 5x - 6 = 0 && \\ &(b3) \quad \text{Berechne: } \sqrt{144} && \\ &(b4) \quad \text{Löse das Gleichungssystem:} \\ &\quad\quad \begin{cases} 9 x - 2 y = 7 \\ 5x + 4y = 11 \end{cases} && \\ &(b5) \quad \text{Berechne: } \left(\frac{ 9 }{5}\right)^{-2} \cdot \left(\frac{4}{7}\right)^{- 6 } && \\ &(b6) \quad \text{Löse die Ungleichung: } \frac{ 8 x+ 7 }{ 12 } \geq \frac{x- 8 }{ 8 } && \\ &(b7) \quad \text{Berechne: } \log_{2} 3 2 + \log_{\frac{ 1 }{2}} 4 && \\ &(b8) \quad \text{Löse die Gleichung: } \sqrt{4x+ 1 } = \sqrt{5x- 4 } && \\ &(b9) \quad \text{Berechne: } \sin\left(\frac{\pi}{6}\right) \cdot \cos\left(\frac{\pi}{4}\right) + \tan\left(\frac{\pi}{ 6 }\right) && \\ \end{flalign*} using iTextSharp.text; using iTextSharp.text.pdf; using Microsoft.AspNetCore.Hosting; using Microsoft.AspNetCore.Mvc; using System.IO; public class PdfGeneratorComponent : ComponentBase { private readonly IWebHostEnvironment _hostEnvironment; public PdfGeneratorComponent(IWebHostEnvironment hostEnvironment) { _hostEnvironment = hostEnvironment; } public void GeneratePdf() { // Kreirajte dokument Document document = new Document(); // Odredite putanju za spremanje PDF-a string webRootPath = _hostEnvironment.WebRootPath; string filePath = Path.Combine(webRootPath, "pdfs", "generated.pdf"); FileStream fileStream = new FileStream(filePath, FileMode.Create); // Povežite dokument s izlaznim tokom PdfWriter writer = PdfWriter.GetInstance(document, fileStream); // Otvorite dokument document.Open(); // Dodajte sadržaj u dokument Paragraph paragraph = new Paragraph("Ovo je primjer teksta u PDF dokumentu."); document.Add(paragraph); // Zatvorite dokument document.Close(); writer.Close(); fileStream.Close(); } }
An unhandled error has occurred. Reload 🗙