Sara
Calculation with fractions
Zamjeni tako da izbaciš tekst u paragraf kao u primjeru:
Pogrešno je:
&(a) \quad \text{Izračunajte: } \frac{ §§V1(3,15,3)§§ }{4} \cdot \left(\frac{5}{6} + \frac{ §§V9(3,15,.5)§§ }{8}\right) && \\\
Ispravno je:
<p> Izračunajte </p>
\( \frac{ §§V1(3,15,3)§§ }{4} \cdot \left(\frac{§§V1(1,10,1)§§§§V0(1,10,1)§§5}{6} + \frac{ §§V2(3,15,.5)§§ }{8}\right) \)
Izmjeni na taj način:
&(b) \quad \text{Riješite jednadžbu: } §§V2(2,10,0.125)§§ x^2 + 5x - §§V3(3,15,3)§§ = 0 && \\\
&(c) \quad \text{Pronađite korijene kvadratne jednadžbe: } 2x^2 - 5x + 1 = 0 && \\\
&(d) \quad \text{Izračunajte zbroj geometrijskog niza: } 3, 6, 12, 24, \ldots \text{ do } 10 \text{-tog} \text{ člana} && \\\
&(e) \quad \text{Izračunajte određeni integral: } \int_{0}^{§§V4(1,15,1)§§} (2x + 1) , dx && \\\
&(f) \quad \text{Pronađite vrijednost parametra } a, \text{ za koju sustav jednadžbi ima jedinstveno rješenje:} \\
& \quad \quad \begin{cases}
2x - y = 5 \\
x + 3y = §§V5(-5,15,1)§§ \\
\end{cases} && \\
&(g) \quad \text{Izračunajte izraz: } \sqrt{§§V6(16,64,4)§§} + \sqrt{§§V7(25,100,5)§§} && \\\
&(h) \quad \text{Riješite nejednadžbu: } 3x - 7 > 2x + 4 && \\
&(i) \quad \text{Izračunajte zbroj aritmetičkog niza: } 7, 11, 15, 19, \ldots \text{ do } 15 \text{-tog} \text{ člana} && \\\
&(j) \quad \text{Izračunajte granicu niza: } \lim_{{n \to \infty}} \frac{3n^2 + 2n}{n^2 + 1} &&\ \\
& \textbf{ Najmuževniji Role budi ti } && \\
&(a) \quad \text{Izračunajte: } \frac{ §§V1(3,25,3)§§ }{4} \cdot \left(\frac{5}{6} + \frac{7}{8}\right) && \\\
&(b) \quad \text{Riješite jednadžbu: } §§V2(2,30,2)§§ x^2 + 5x - §§V3(3,45,3)§§ = 0 && \\
&(c) \quad \text{Izračunajte obim pravokutnika s dužinama stranica } §§V4(4,20,2)§§ \text{ i } §§V5(5,25,5)§§ . && \\
&(d) \quad \text{Izračunajte vrijednost izraza: } \sqrt{ §§V6(2,10,1)§§ } + \frac{ §§V7(3,12,3)§§ }{2} \cdot §§V8(1,5,1)§§ ^2 && \\
&(e) \quad \text{Riješite sustav jednadžbi:} \\
& \quad \begin{cases}
§§V9(1,5,1)§§ x + §§V10(2,10,2)§§ y = §§V1(3,15,3)§§ \\
§§V2(1,5,1)§§ x - §§V3(1,5,1)§§ y = §§V4(2,10,2)§§
\end{cases} && \\
&(f) \quad \text{Izračunajte površinu trokuta s visinom } §§V5(4,20,2)§§ \text{ i osnovicom } §§V6(5,25,5)§§ . && \\
&(g) \quad \text{Riješite logaritamsku jednadžbu: } \log(x + §§V7(1,5,1)§§ ) = §§V8(2,10,2)§§ && \\
&(h) \quad \text{Izračunajte vrijednost izraza: } \frac{ §§V9(2,100,1)§§ !}{ §§V20(1,5,1)§§ } \cdot \left( §§V2(2,100,4)§§ ^2 - §§V2(1,10,1)§§ ^3\right) && \\
&(i) \quad \text{Izračunajte volumen valjka s polumjerom baze } §§V3(2,10,2)§§ \text{ i visinom } §§V4(3,15,3)§§ . && \\
&(j) \quad \text{Riješite eksponencijalnu jednadžbu: } §§V5(1,5,1)§§ ^{2x - §§V6(1,5,1)§§ } = §§V7(2,10,2)§§ &&
<h6>
<div class="container mt-4">
<div class="row">
<div class="col-md-6">
<table class="table table-bordered custom-table">
<tbody>
<tr>
<td><b> <b> Gleiche Vorzeichen</b><br />
Man addiert die Zahlen, ohne ihr Vorzei- chen zu berücksichtigen. Das Ergebnis erhält das gemeinsame Vorzeichen.</td>
<td><b> Verschiedene Vorzeichen</b><br />
Man subtrahiert die Zahlen, ohne ihr Vorzei- chen zu berücksichtigen. Das Ergebnis erhält dar Vorzeichen der Zahl, die von Null weiter entleret ist.</td>
</tr>
<tr>
<td><p> a) (+14)+(+3)
= + (14+3)
= +17<br />
b) (-11)+(-14)
= - (11+14)
=-25<br />
c) (+13)+(-6)
= +(13-6)
= +7 <br />
d) (-11)+(+9)
= - (11-9)
=-2
</p></td>
<td>
a) (+14) + (+3)
=14+3
= 17<br />
b) (-11)+(-14)
= -11 + (-14)
=-25
<br />
c) (+13) + (-6)
= 13+ (-6)
= 7 <br />
d) (-16)+(+9)
=-16+9
=-7
</p>
</td>
</tr>
</tbody>
</table>
</div>
</div>
<br>
<a href="https://www.danas.rs/bbc-news-serbian/pisa-test-2022-u-cemu-je-tajna-uspeha-singapurske-matematike/">Muževan</a>
<br>
11,15,16,33,39,49,69,84,91,95,122,126,126,135,175,177,179,186,192,195,210,239,288,303,305,306,307,315,324,339,341,350,354,367,370,399,415,417,419,432,447,472,472,491,498,511,513,515,520,532,533,535,539,556,562,568,579,592,605, </h6>