U razlomak te ljubim

Razlomci i decimalni brojevi
<h2> \begin{flalign*} & \textbf{Izračunaj tako da razlomak pretvoriš u cijeli broj i ostatak} && \\ & \quad \text{ Primjer } \frac{ 19 }{7} = 2 + \frac{ 5 }{7} && \\ \\ &(a) \quad \frac{ §§V1(6,49,1)§§ }{ §§V6(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(b) \quad \frac{ §§V2(-60,-6,1)§§ }{ §§V7(5,9,1)§§ } = \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(c) \quad \frac{ §§V3(1,10,1)§§ }{ §§V8(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(d) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(e) \quad \frac{ §§V5(30,50,1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(f) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(g) \quad \frac{ §§V1(10,50,1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(h) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ \\&(i) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(2,9,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(j) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(k) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(l) \quad \frac{ §§V6(-50,10,3)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ &(m) \quad \frac{ §§V1(6,49,1)§§ }{ §§V6(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(n) \quad \frac{ §§V2(-60,-6,1)§§ }{ §§V7(5,9,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(o) \quad \frac{ §§V3(1,10,1)§§ }{ §§V8(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(p) \quad \frac{ §§V4(-10,-1,1)§§ }{ §§V9(1,5,1)§§ } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(q) \quad \frac{ §§V5(30,50,1)§§ }{ §§V1(1,5,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(r) \quad \frac{ §§V6(50,99,1)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(s) \quad \frac{ §§V1(10,50,1)§§ }{ §§V6(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(t) \quad \frac{ §§V2(2,50,2)§§ }{ §§V7(3,9,3)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ \\&(u) \quad \frac{ §§V3(3,66,3)§§ }{ §§V8(2,9,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(w) \quad \frac{ §§V4(-50,50,1)§§ }{ §§V9(2,8,2)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(x) \quad \frac{ §§V5(-50,50,1)§§ }{ §§V1(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(z) \quad \frac{ §§V6(-50,10,3)§§ }{ §§V2(1,9,1)§§ } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ \end{flalign*} </h2> Nja
An unhandled error has occurred. Reload 🗙