U razlomak te ljubim


\begin{flalign*} & \textbf{Izračunaj tako da razlomak pretvoriš u cijeli broj i ostatak} && \\ & \quad \text{ Primjer } \frac{ 19 }{7} = 2 + \frac{ 5 }{7} && \\ \\ &(a) \quad \frac{ 29 }{ 6 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(b) \quad \frac{ -12 }{ 5 } = \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(c) \quad \frac{ 6 }{ 3 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(d) \quad \frac{ -10 }{ 4 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(e) \quad \frac{ 30 }{ 29 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(f) \quad \frac{ 6 }{ -12 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(g) \quad \frac{ 29 }{ 6 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(h) \quad \frac{ -12 }{ 5 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ \\&(i) \quad \frac{ 6 }{ 3 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(j) \quad \frac{ -10 }{ 4 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(k) \quad \frac{ 30 }{ 29 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(l) \quad \frac{ 6 }{ -12 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ &(m) \quad \frac{ 29 }{ 6 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(n) \quad \frac{ -12 }{ 5 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(o) \quad \frac{ 6 }{ 3 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(p) \quad \frac{ -10 }{ 4 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(q) \quad \frac{ 30 }{ 29 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(r) \quad \frac{ 6 }{ -12 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(s) \quad \frac{ 29 }{ 6 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(t) \quad \frac{ -12 }{ 5 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ \\&(u) \quad \frac{ 6 }{ 3 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(w) \quad \frac{ -10 }{ 4 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ \\&(x) \quad \frac{ 30 }{ 29 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad &(z) \quad \frac{ 6 }{ -12 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ \end{flalign*}

Nja