Drugi realni
<div class="container mt-4">
<h3>1. Izračunajte vrijednosti danih izraza i pokraj svakog rješenja zapišite pripada li skupu N.</h3>
<p>(a) -14 : (-7) + 30 * (-2) = §§V0(-50,50,1)§§</p>
<p>(b) 24.5 : 5 - 3 = §§V1(-20,20,0.5)§§</p>
<p>(c) 1 <sup>6</sup>⁄<sub>5</sub> + 4⁄5 = §§V2(0,10,0.2)§§</p>
<h3>2. Brojevi x, y i z rješenja su zadanih jednadžbi.</h3>
<p>Označite istinite kružiće zelenom bojom, a neistinite crvenom.</p>
<p>Jednadžbe:</p>
<p>5/6 x - 0.5 = -2 + 4/3 x</p>
<p>-(2y - 3) + 1 = 2 * (5 + 2y)</p>
<p>1.2z + 4 - z = 0.1</p>
<svg width="200" height="200" viewBox="0 0 200 200" fill="none" xmlns="http://www.w3.org/2000/svg">
<circle cx="100" cy="100" r="100" fill="yellow"/>
<circle cx="50" cy="50" r="30" fill="white"/>
<circle cx="150" cy="50" r="30" fill="white"/>
<circle cx="50" cy="150" r="30" fill="white"/>
<circle cx="150" cy="150" r="30" fill="white"/>
<text x="35" y="60" font-size="20" font-family="Arial" fill="black">x∈N</text>
<text x="135" y="60" font-size="20" font-family="Arial" fill="black">z∉Q</text>
<text x="35" y="160" font-size="20" font-family="Arial" fill="black">y∉N</text>
<text x="135" y="160" font-size="20" font-family="Arial" fill="black">y∉Q</text>
<text x="60" y="100" font-size="20" font-family="Arial" fill="black">z∈N</text>
<text x="140" y="100" font-size="20" font-family="Arial" fill="black">y∈Z</text>
<text x="60" y="140" font-size="20" font-family="Arial" fill="black">z∈Z</text>
<text x="140" y="140" font-size="20" font-family="Arial" fill="black">x∈Q</text>
</svg>
<h3>3. Izračunajte.</h3>
<p>(a) -0.2<sup>2</sup> = §§V3(-1,1,0.01)§§</p>
<p>(b) (-17)<sup>2</sup> = §§V4(0,400,1)§§</p>
<p>(c) -(-9)<sup>2</sup> = §§V5(-100,0,1)§§</p>
<p>(d) 1.4<sup>2</sup> = §§V6(0,5,0.01)§§</p>
<p>(e) - (3/8)<sup>2</sup> = §§V7(-1,1,0.001)§§</p>
<p>(f) (2 2/5)<sup>2</sup> = §§V8(0,10,0.1)§§</p>
<p>(g) -(-4)<sup>2</sup> / -1<sup>2</sup> = §§V9(-20,20,1)§§</p>
</div>
<div class="container mt-4">
<h3 class="text-primary">Matematički zadaci</h3>
<h4 class="text-success">4. Izračunajte:</h4>
<p>(a) §§V0(10,100,2)§§ : §§V1(1,5,1)§§² - §§V2(1,10,1)§§² =</p>
<p>(b) (-§§V3(1,10,0.1)§§ + §§V4(1,5,0.1)§§ - §§V5(1,5,1)§§)² =</p>
<p>(c) -§§V6(1,10,1)§§³ + §§V7(1,10,1)§§ =</p>
<p>(d) §§V8(10,20,1)§§² : ( §§V9(2,5,1)§§ - §§V10(1,2,1)§§)² =</p>
<p>(e) (§§V11(5,15,1)§§ + §§V12(1,5,1)§§ - §§V13(5,15,1)§§)² =</p>
<h4 class="text-success">5. Sljedeće umnoške zapišite u obliku potencije:</h4>
<p>(a) (§§V14(1,3,1)§§/§§V15(1,3,1)§§) * (§§V16(1,3,1)§§/§§V17(1,3,1)§§) * (§§V18(1,3,1)§§/§§V19(1,3,1)§§) =</p>
<p>(b) §§V20(3,6,1)§§.31 * §§V21(3,6,1)§§.31 * §§V22(3,6,1)§§.31 =</p>
<h4 class="text-success">6. Zapišite u obliku umnoška jednakih faktora:</h4>
<p>(a) §§V23(2,6,1)§§⁵ * §§V24(2,6,1)§§² =</p>
<p>(b) §§V25(2,10,1)§§⁶ =</p>
<h4 class="text-success">7. Izračunajte:</h4>
<p>(a) §§V26(2,10,1)§§⁸ =</p>
<p>(b) §§V27(0,1,0.1)§§⁶ =</p>
<p>(c) §§V28(2,10,1)§§³ - §§V29(1,3,1)§§⁴ =</p>
<p>(d) -§§V30(1,5,1)§§² : §§V31(1,5,1)§§² =</p>
<h4 class="text-success">8. Izračunajte:</h4>
<p>(a) §§V32(1,6,0.1)§§² * §§V33(2,7,1)§§³ - §§V34(1,5,1)§§⁶ =</p>
<h4 class="text-success">9. Napišite u obliku potencije:</h4>
<p>(a) §§V35(2,10,1)§§⁸ * §§V36(2,10,1)§§⁷ =</p>
<p>(b) §§V37(10,30,1)§§¹⁵ : §§V38(10,30,1)§§⁴ =</p>
</div>
<div class="container mt-4">
<h3 class="text-primary">Matematički zadaci</h3>
<h4 class="text-success">10. Izračunajte i zapišite u obliku potencije:</h4>
<p>(a) §§V0(1,5,0.1)§§³ * (§§V1(1,5,0.1)§§³ * §§V2(1,5,0.1)§§³) =</p>
<p>(b) 10³ˣ⁺⁵ * 10ˣ =</p>
<p>(c) (§§V3(10,50,10)§§⁸ * §§V4(10,50,10)§§³) * (§§V5(10,50,10)§§⁴)² =</p>
<p>(d) (-§§V6(1,5,1)§§/§§V7(1,5,1)§§)¹⁹ * (-§§V8(1,5,1)§§/§§V9(1,5,1)§§)⁹ * (-§§V10(1,5,1)§§/§§V11(1,5,1)§§)⁵ =</p>
<p>(e) ((-§§V12(5,15,5)§§)³ * (-§§V13(5,15,5)§§)⁵)⁴ =</p>
<h4 class="text-success">11. Odredite x:</h4>
<p>(a) 12ˣ⁺¹⁰ = 12²⁰ * 12ˣ</p>
<p>(b) (§§V14(3,7,1)§§/§§V15(5,10,1)§§)³ˣ⁻² * (§§V16(3,7,1)§§/§§V17(5,10,1)§§)⁷ = (§§V18(3,7,1)§§/§§V19(5,10,1)§§)⁵</p>
<h4 class="text-success">12. Izračunajte i rezultat zapišite u znanstvenom zapisu:</h4>
<p>(a) §§V20(10,20,1)§§ * 10⁴ + §§V21(1,10,0.1)§§ * 10⁴ - §§V22(1,10,0.1)§§ * 10⁴ =</p>
<p>(b) (§§V23(5,10,1)§§ * 10³) * (-§§V24(1,5,0.1)§§ * 10⁶) =</p>
<p>(c) (§§V25(1,5,0.1)§§ * 10⁸) : (§§V26(1,5,0.1)§§ * 10⁵) =</p>
<p>(d) (§§V27(1,6,0.1)§§ * 10⁴)² =</p>
<h4 class="text-success">13. U spremištu se nalazi §§V28(1,10,0.1)§§ * 10² grafičkih tableta. Cijena svakog tableta je §§V29(5,10,0.1)§§ * 10¹ eura. Kolika je ukupna cijena svih grafičkih tableta? Rezultat zapišite u znanstvenom zapisu.</h4>
<h4 class="text-success">14. Izračunajte:</h4>
<p>(a) √§§V30(1,5,0.01)§§ =</p>
<p>(b) √(§§V31(1,3,1)§§/§§V32(2,8,2)§§) =</p>
<p>(c) √§§V33(100,2500,100)§§ =</p>
<p>(d) §§V34(1,10,1)§§ * √§§V35(1,10,1)§§ - §§V36(1,10,1)§§ =</p>
<p>(e) √§§V37(20,40,1)§§ - §§V38(1,10,1)§§ + √§§V39(40,50,1)§§ + §§V40(1,10,1)§§ =</p>
<p>(f) √§§V41(40,50,1)§§ - §§V42(1,10,1)§§ : §§V43(1,10,1)§§ * §§V44(1,10,1)§§ * §§V45(1,10,1)§§² =</p>
<p>(g) §§V46(1,10,1)§§ * √§§V47(10,20,1)§§ - §§V48(1,10,1)§§ * √§§V49(10,20,1)§§ =</p>
<p>(h) §§V50(1,5,1)§§ * √§§V51(20,40,1)§§ + §§V52(1,5,1)§§ * √§§V53(5,10,1)§§ - §§V54(1,5,1)§§ * √§§V55(20,40,1)§§ + §§V56(1,5,1)§§ * √§§V57(5,10,1)§§ =</p>
</div>
(i)
<div class="container mt-5">
<h2 class="text-center">Mathematical Approximation Table</h2>
<table class="table table-bordered table-striped text-center" border="1" style="border-collapse: collapse;">
<thead class="table-dark">
<tr>
<th>S.no.</th>
<th>Numbers</th>
<th>Calculation</th>
<th>Approx Answer</th>
<th>Exact Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\( \sqrt{23} \)</td>
<td>\( \frac{23 + 25}{2 \times \sqrt{25}} = \frac{48}{10} = 4.8 \)</td>
<td>4.8</td>
<td>4.795</td>
</tr>
<tr>
<td>2</td>
<td>\( \sqrt{50} \)</td>
<td>\( \frac{50 + 49}{2 \sqrt{49}} = \frac{99}{14} \)</td>
<td>7.071</td>
<td>7.071</td>
</tr>
<tr>
<td>3</td>
<td>\( \sqrt{68} \)</td>
<td>\( \frac{68 + 64}{2 \sqrt{64}} = \frac{132}{16} \)</td>
<td>8.25</td>
<td>8.246</td>
</tr>
<tr>
<td>4</td>
<td>\( \sqrt{112} \)</td>
<td>\( \frac{112 + 121}{2 \sqrt{121}} = \frac{233}{22} \)</td>
<td>10.59</td>
<td>10.583</td>
</tr>
<tr>
<td>5</td>
<td>\( \sqrt{2509} \)</td>
<td>\( \frac{2509 + 2500}{2 \sqrt{2500}} = \frac{5009}{100} \)</td>
<td>50.09</td>
<td>50.0899</td>
</tr>
<tr>
<td>6</td>
<td>\( \sqrt{78} \)</td>
<td>\( \frac{78 + 81}{2 \sqrt{81}} = \frac{159}{18} \)</td>
<td>8.833</td>
<td>8.8317</td>
</tr>
<tr>
<td>72</td>
<td>\( \sqrt{96} \)</td>
<td>\( \frac{96 + 100}{2 \sqrt{100}} = \frac{196}{20} \)</td>
<td>9.8</td>
<td>9.7979</td>
</tr>
</tbody>
</table>
</div>