Quadrieren von Produkt und Quotient Beispiele

Brojevi do milijun
<p>a) \(§§V0(-5,5,1)§§x^2 + §§V2(5,15,5)§§x + 9 = §§V3(-5,5,1)§§x^2 + §§V1(-10,10,1)§§x + §§V4(9,90,9)§§\)</p> <p>b) \(9x^2 - 12x + 4 = §§V2(-5,5,1)§§x^2 - §§V3(-10,10,1)§§x + 4\)</p> <p>c) \(§§V4(-10,10,1)§§x^2 + §§V3(-20,20,1)§§x + 25 = §§V2(-5,5,1)§§x^2 + §§V1(-10,10,1)§§x + 25\)</p> <p>d) \(16x^2 + 20x + 6 = §§V0(-5,5,1)§§x^2 + §§V1(-10,10,1)§§x + 6\)</p> <p>e) \(§§V2(-10,10,1)§§x^2 - §§V3(-20,20,1)§§x + 100 = §§V0(-5,5,1)§§x^2 + §§V4(5,15,5)§§x + 100\)</p> <p>f) \(25x^2 - 20x + 4 = §§V4(-5,5,1)§§x^2 - §§V2(-10,10,1)§§x + 4\)</p> <p>g) \(§§V1(-10,10,1)§§x^2 + §§V3(-20,20,1)§§x + 144 = 16x^2 + §§V4(20,200,20)§§x + 144\)</p> <p>h) \(§§V4(-5,5,1)§§x^2 - 24x + 36 = 4x^2 - §§V1(-20,20,1)§§x + 36\)</p> <p>i) \(§§V0(-5,5,1)§§x^2 - §§V3(-20,20,1)§§x + 225 = 25x^2 + 20x + 225\)</p> <p>j) \(4x^2 - 16x + 16 = §§V2(-5,5,1)§§x^2 - §§V0(-10,10,1)§§x + 16\)</p>
An unhandled error has occurred. Reload 🗙