Bruche

Proporcionalnost i obrnuta proporcionalnost
<p>a) \(\frac{§§V0(1,10,1)§§7x - 1}{2}=2x\)</p> <p>b) \(\frac{§§V1(1,10,1)§§8\overline{x} - 1}{9}=5§§V2(1,10,1)§§x\)</p> <p>c) \(\frac{§§V3(1,10,1)§§4x - 1}{9}=4§§V4(1,10,1)§§x\)</p> <p>d) \(\frac{§§V5(1,10,1)§§9x - 1}{3}=10§§V6(1,10,1)§§x\)</p> <p>e) \(\frac{§§V7(1,10,1)§§9x - 1}{2}=\frac{§§V8(1,10,1)§§4x - 5}{8}\)</p> <p>f) \(\frac{§§V9(1,10,1)§§4x - 1}{5}=\frac{§§V10(1,10,1)§§8x - 6}{4}\)</p> <p>g) \(\frac{§§V11(1,10,1)§§2x - 1}{4}=\frac{§§V12(1,10,1)§§7x - 1}{9}\)</p> <p>h) \(\frac{§§V13(1,10,1)§§5x - 1}{10}=\frac{10^7§§V14(1,10,1)§§x - 2}{10}\)</p> <p>i) \(\frac{§§V15(1,10,1)§§2x - 1}{8}=\frac{§§V16(1,10,1)§§2x - 7}{3}\)</p> <p>j) \(3-\frac{§§V17(1,10,1)§§x + 1}{4}=6-\frac{3 - 7§§V18(1,10,1)§§x}{8}\)</p> <p>k) \(5-\frac{§§V19(1,10,1)§§x + 1}{2}=5-\frac{5 - 7§§V20(1,10,1)§§x}{9}\)</p> <p>l) \(9-\frac{§§V21(1,10,1)§§x + 1}{10}=7-\frac{2 - 3§§V22(1,10,1)§§x}{10}\)</p> <p>m) \(6-\frac{§§V23(1,10,1)§§x + 1}{3}=4-\frac{9 - 5§§V24(1,10,1)§§x}{5}\)</p> <p>n) \(4-\frac{§§V25(1,10,1)§§x + 1}{9}=6-\frac{5 - 3§§V26(1,10,1)§§x}{5}\)</p> <p>o) \(7-\frac{§§V27(1,10,1)§§x + 1}{6}=3-\frac{6 - 9§§V28(1,10,1)§§x}{4}\)</p> <p>p) \(\frac{5}{3}-\frac{§§V29(1,10,1)§§x + 1}{3}=7-\frac{3 - 7§§V30(1,10,1)§§x}{4}+\frac{1}{4}\)</p> <p>q) \(\frac{4}{4}-\frac{§§V31(1,10,1)§§x + 1}{7}=4-\frac{10 - 9§§V32(1,10,1)§§x}{2}+\frac{1}{4}\)</p> <h6>Mehr Spaß 🤣 </h5> <p>1.) x+2y=4, 2x+y=5</p> <p>2.) 3x+2y=14, x+y=5</p> <p>3.) 3x-2y=4, 2x+y=5</p> <p>4.) \(\frac{2x}{3}-y=4, x-y=5\)</p> <p>5.) \(\frac{x}{5}-y=4, y x--=1 4\)</p> <p>6.) x-y=1 , \(\frac{x}{3}-\frac{y}{5}=3\)</p> <p>7.) 2x-y=1 , \(\frac{x}{2}-\frac{y}{5}=3\)</p> <p>8.) \(\frac{x}{3}-\frac{y}{2}=1,\frac{x}{2}-y=3\)</p>
An unhandled error has occurred. Reload 🗙