Zec maljutkaš

Kvadriranje
a) \[ \begin{align*} \int_{0}^{2} \left( x^3 + 2x^2 - \frac{ §§V0(1,5,1)§§ }{ §§V1(-5,5,1)§§ } x^4 \right) \, dx &= uv \Big|_{0}^{2} - \int_{0}^{2} v \, du \\ &= 2^ §§V1(1,5,1)§§ \cdot §§V1(1,5,1)§§ - 0^3 \cdot 0 - 3 \int_{0}^{ §§V1(1,5,1)§§ } x^ §§V1(1,5,1)§§ \, dx \\ &= 16 - 3 \cdot \frac{1}{ §§V1(1,5,1)§§ } x^4 \Big|_{0}^{2} \\ &= 16 - 3 \cdot \frac{1}{ §§V1(1,5,1)§§ } \cdot 2^4 + 3 \cdot \frac{1}{4} \cdot 0^4 \\ &= 4 \\ & \end{align*} \] b) \[ \oint_{C} \left( P \, dx + Q \, dy \right) = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \] c) \[ \begin{align*} §§V4(1,5,1)§§ x + 2y - §§V4(10,50,5)§§ &= 4 \\ 2x - y + §§V4(3,27,3)§§ z &= 7 \\ x + §§V4(1,15,1)§§ y - §§V8(1,15,1)§§ z &= 5 \end{align*} \] Ovo su za tebe zadaci dragi moj §§N0§§
An unhandled error has occurred. Reload 🗙