Zec maljutkaš
a) 
\[ 
\begin{align*}
\int_{0}^{2} \left( x^3 + 2x^2 - \frac{ 2 }{ -3 } x^4 \right) \, dx &= uv \Big|_{0}^{2} - \int_{0}^{2} v \, du \\
&= 2^ -3  \cdot  -3  - 0^3 \cdot 0 - 3 \int_{0}^{ -3 } x^ -3  \, dx \\
&= 16 - 3 \cdot \frac{1}{ -3 } x^4 \Big|_{0}^{2} \\
&= 16 - 3 \cdot \frac{1}{ -3 } \cdot 2^4 + 3 \cdot \frac{1}{4} \cdot 0^4 \\
&= 4
\\
& 
\end{align*}
\]
b) \[ 
\oint_{C} \left( P \, dx + Q \, dy \right) = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA 
\]
c) 
\[ 
\begin{align*}
 3  x + 2y -  3  &= 4 \\
2x - y +  3 z &= 7 \\
x +  3 y -  11 z &= 5
\end{align*}
\]
Ovo su za tebe zadaci dragi moj  Steve