Zec maljutkaš
a)
\[
\begin{align*}
\int_{0}^{2} \left( x^3 + 2x^2 - \frac{ 5 }{ -3 } x^4 \right) \, dx &= uv \Big|_{0}^{2} - \int_{0}^{2} v \, du \\
&= 2^ -3 \cdot -3 - 0^3 \cdot 0 - 3 \int_{0}^{ -3 } x^ -3 \, dx \\
&= 16 - 3 \cdot \frac{1}{ -3 } x^4 \Big|_{0}^{2} \\
&= 16 - 3 \cdot \frac{1}{ -3 } \cdot 2^4 + 3 \cdot \frac{1}{4} \cdot 0^4 \\
&= 4
\\
&
\end{align*}
\]
b) \[
\oint_{C} \left( P \, dx + Q \, dy \right) = \iint_{D} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA
\]
c)
\[
\begin{align*}
2 x + 2y - 2 &= 4 \\
2x - y + 2 z &= 7 \\
x + 2 y - 1 z &= 5
\end{align*}
\]
Ovo su za tebe zadaci dragi moj Henry