Voda-Jeger


(a) Pomnoži: \( \sqrt{12} \cdot \sqrt{9} \)

(b) Podijeli: \( \frac{\sqrt{75}}{\sqrt{7}} \)

(c) Ako je \( \sqrt{19} = x \), odredi vrijednost izraza \( \sqrt{8} \cdot x \)

(d) Izračunaj: \( \frac{\sqrt{84} \cdot \sqrt{24}}{\sqrt{12}} \)

(e) Ako je \( \sqrt{117} = a \), odredi vrijednost izraza \( \frac{a}{\sqrt{14}} \)

(f) Pomnoži i zapiši rezultat u obliku kvadratnog korijena: \( \sqrt{108} \cdot \sqrt{119} \)

(g) Podijeli i zapiši rezultat kao jedan kvadratni korijen: \( \sqrt{360} : \sqrt{16} \)

(h) Ako je \( \sqrt{56} = y \), izračunaj vrijednost izraza \( y^2 \)

(i) Izračunaj: \( \frac{\sqrt{135} + \sqrt{140}}{\sqrt{15}} \)

(j) Ako je \( \sqrt{95} = b \), odredi vrijednost izraza \( b^3 \)

Nova tura

(a) Izračunaj vrijednost izraza: \( \frac{\sqrt{44} \cdot \sqrt{60}}{\sqrt{12}} + \sqrt{78} \)

(b) Ako je \( \sqrt{15} = p \) i \( \sqrt{48} = q \), izračunaj izraz \( p^2 + \frac{q}{2} \)

(c) Pomnoži i pojednostavi izraz: \( \sqrt{147} \cdot (\sqrt{72} + \sqrt{80}) \)

(d) Podijeli i izračunaj izraz u obliku jednog korijena: \( \frac{\sqrt{324} + \sqrt{144}}{\sqrt{14}} \)

(e) Ako je \( \sqrt{80} = r \) i \( \sqrt{144} = s \), odredi vrijednost izraza \( \frac{r^2}{s} \)

(f) Izračunaj vrijednost izraza: \( \sqrt{196} - \sqrt{35} + \sqrt{64} \)

(g) Ako je \( \sqrt{102} = t \), izračunaj vrijednost izraza \( \frac{t^3}{\sqrt{12}} \)

(h) Pomnoži i zapiši rezultat u obliku kvadratnog korijena: \( \sqrt{60} \cdot \sqrt{98} \)

(i) Podijeli i zapiši rezultat kao jedan kvadratni korijen: \( \sqrt{252} : \sqrt{138} \)

(j) Ako je \( \sqrt{16} = u \), odredi vrijednost izraza \( u^2 - 3u + 2 \)


Pravila za množenje i dijeljenje kvadratnih korijena

Operacija Pravilo Primjer
Množenje Korijen iz umnoška jednak je umnošku korijena: \( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \)
\( \sqrt{5} \cdot \sqrt{8} = \sqrt{40} \)
Dijeljenje Korijen odjeljenika podijeljen korijenom djelitelja jednak je korijenu kvocijenta: \( \frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \), \( b \neq 0 \)
\( \frac{\sqrt{12}}{\sqrt{3}} = \sqrt{4} = 2 \)