Wangen
<p>(a) §§( ((( §§V0(1,50,1)§§ + §§V1(1,10,1)§§ ) / §§V2(1,10,1)§§ ) * §§V3(1,10,1)§§ ) - 5 )§§ =
((( §§V0(1,50,1)§§ + §§V1(1,10,1)§§ ) / §§V2(1,10,1)§§ ) * §§V3(1,10,1)§§ ) - 5 )</p>
<p>(a1) §§( ((( §§V10(1,50,1)§§ + §§V11(1,10,.11)§§ ) / §§V12(1,10,1)§§ ) * §§V13(1,10,1)§§ ) - 5 )§§ =
((( §§V10(1,50,1)§§ + §§V11(1,10,.11)§§ ) / §§V12(1,10,1)§§ ) * §§V13(1,10,1)§§ ) - 5 )</p>
<p>(b) Lösen Sie die Gleichung für x: \( \sqrt{ §§V9(4,25,2)§§ x - §§V1(1,10,1)§§ } + §§V2(2,8,1)§§ = §§V3(5,15,1)§§ - \frac{ §§V4(2,10,1)§§ }{3}x \)</p>
<p>(c) Berechnen Sie den Ausdruck:
\( \left( \frac{ §§V1(2,10,1)§§ + §§V2(1,5,1)§§ }{ §§V3(1,8,1)§§ } \right) * \left( §§V4(2,6,1)§§ - \frac{ §§V5(1,4,1)§§ }{ §§V6(1,5,1)§§ } \right) \)</p>
<p>(d) Bestimmen Sie den Wert von x:
\( \frac{ ((( §§V7(1,9,1)§§ x - §§V8(2,7,1)§§ ) * §§V9(3,12,1)§§ ) + §§V1(1,6,1)§§ ) }{ §§V2(2,10,1)§§ } = x + §§V3(3,9,1)§§ \)</p>
<p>(e) Berechnen Sie das bestimmte Integral:
\( \int_{ §§V4(1,4,1)§§ }^{ §§V5(6,12,1)§§ } \left( x^3 + 2\left( x - §§V6(1,3,1)§§ \right)^2 \right) \,dx \)</p>
<p>(f) Lösen Sie das Gleichungssystem:
\( 3x + 2y - z = §§V7(5,15,1)§§ \)
\( x - 3y + 4z = - §§V8(2,8,1)§§ \)
\( 2x + y - 2z = §§V9(7,21,1)§§ \)</p>
<p>(g) Finden Sie die Lösung der Differentialgleichung:
\( \frac{ dy }{dx} + 2(y - §§V1(1,4,1)§§ ) = (4x + 3e^{ §§V2(1,4,1)§§ x}) \)</p>
<p>(h) Bestimmen Sie den Wert von x, der die Gleichung erfüllt:
\( \tan( §§V3(1,5,1)§§ (x - §§V4(1,3,1)§§ )) + \frac{1}{ §§V5(2,8,1)§§ }\sin( §§V6(1,4,1)§§ x) = 1 \)</p>
<p>(i) Berechnen Sie das unbestimmte Integral der Funktion:
\( \int \left( §§V7(4,16,1)§§ x^3 + 2\sqrt{x + §§V8(1,5,1)§§ } + \frac{1}{(x^2 + §§V9(1,3,1)§§ )} \right) \,dx \)</p>
<p>(j) Berechnen Sie die zweite Ableitung:
\( g(x) = \frac{ §§V1(2,8,1)§§ x^3 \cos(x - §§V2(1,4,1)§§ )}{\sqrt{ §§V3(1,9,2)§§ (x + 1)}} - \ln( §§V4(3,12,1)§§ x^2 + §§V5(1,5,1)§§ x) \)</p>
<p>(k) Vereinfachen Sie den Ausdruck:
\( \left( \frac{ ((( §§V6(2,10,1)§§ x^2 - §§V7(1,6,1)§§ ) + §§V8(3,9,1)§§ ) * §§V9(1,4,1)§§ )}{ §§V1(2,8,1)§§ x + §§V2(3,7,1)§§ } \right) - x^2 \)
§§F(ivo, 3, 5 )§§ + §§N1§§ - §§N0§§
<p> §§F( jarebica )§§ + Perica & §§N0§§ </p>
( §§V0(1,50,1)§§ / §§V2(-0.01,2,0.2)§§ - 3 ) + §§V4(80,280,25)§§ = = §§( ( §§V0(1,50,1)§§ / §§V2(-0.01,2,0.2)§§ - 3 ) + §§V4(80,280,25)§§ )§§
</p>
<br>Ovo je neki tablica
<h5 class="text-center">Mathematical Approximation Table</h5>
<table class="table table-bordered table-striped text-center" border="1" style="border-collapse: collapse;">
<thead class="table-dark">
<tr>
<td>S.no.</td>
<td>Numbers</td>
<td>Calculation</td>
<td>Approx Answer</td>
<td>Exact Answer</td>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\( \sqrt{23} \)</td>
<td>\( \frac{23 + 25}{2 \times \sqrt{25}} = \frac{48}{10} = 4.8 \)</td>
<td>4.8</td>
<td>4.795</td>
</tr>
<tr>
<td>2</td>
<td>\( \sqrt{50} \)</td>
<td>\( \frac{50 + 49}{2 \sqrt{49}} = \frac{99}{14} \)</td>
<td>7.071</td>
<td>7.071</td>
</tr>
<tr>
<td>3</td>
<td>\( \sqrt{68} \)</td>
<td>\( \frac{68 + 64}{2 \sqrt{64}} = \frac{132}{16} \)</td>
<td>8.25</td>
<td>8.246</td>
</tr>
<tr>
<td>4</td>
<td>\( \sqrt{112} \)</td>
<td>\( \frac{112 + 121}{2 \sqrt{121}} = \frac{233}{22} \)</td>
<td>10.59</td>
<td>10.583</td>
</tr>
<tr>
<td>5</td>
<td>\( \sqrt{2509} \)</td>
<td>\( \frac{2509 + 2500}{2 \sqrt{2500}} = \frac{5009}{100} \)</td>
<td>50.09</td>
<td>50.0899</td>
</tr>
<tr>
<td>6</td>
<td>\( \sqrt{78} \)</td>
<td>\( \frac{78 + 81}{2 \sqrt{81}} = \frac{159}{18} \)</td>
<td>8.833</td>
<td>8.8317</td>
</tr>
<tr>
<td>7</td>
<td>\( \sqrt{96} \)</td>
<td>\( \frac{96 + 100}{2 \sqrt{100}} = \frac{196}{20} \)</td>
<td>9.8</td>
<td>9.7979</td>
</tr>
</tbody>
</table>
<br />