Thiery
\begin{flalign*}
& \textbf{Questions Mathématiques Complexes avec Variables} && \\
&(a) \quad \text{Calculez:} \\
& \quad \frac{ 9 x^3 - 6 x^2 + 4 x }{x^2 - 1 x + 6 } \div \frac{ 4 x^2 - 1 x }{x^2 - 4 x} && \\
&(b) \quad \text{Résolvez l'équation pour } x: \\
& \quad \sqrt{ 18 x - 9 } + 6 = 4 - \frac{ 1 }{3}x && \\
&(c) \quad \text{Trouvez la valeur de } x \text{ qui satisfait l'équation suivante:} \\
& \quad \frac{ 6 }{ 4 }x - \frac{ 1 }{ 4 } = \frac{ x - 18 }{ 9 } + \frac{ 6 }{ 4 } && \\
&(d) \quad \text{Calculez la dérivée de la fonction suivante:} \\
& \quad f(x) = \frac{ e^{ 1 x}}{x^2} + \ln( 6 x) - \sqrt{ 4 x + 1} && \\
&(e) \quad \text{Calculez l'intégrale définie suivante:} \\
& \quad \int_{ 1 }^{ 4 } (x^3 + 2x^2) \,dx + \int_{ 18 }^{ 9 } (2x + 1) \,dx && \\
&(f) \quad \text{Résolvez le système d'équations suivant:} \\
& \quad \begin{cases}
3x + 2y - z = 6 \\
x - 3y + 4z = - 4 \\
2x + y - 2z = 1
\end{cases} \\
&(g) \quad \text{Trouvez la solution de l'équation différentielle suivante:} \\
& \quad \frac{ dy }{dx} + 2y = 4x + 3e^{ 6 x} && \\
&(h) \quad \text{Déterminez la valeur de } x \text{ qui satisfait l'équation suivante:} \\
& \quad \tan( 4 x) + \frac{1}{ 1 }\sin( 4 x) = 1 && \\
&(i) \quad \text{Calculez l'intégrale indéfinie de la fonction suivante:} \\
& \quad \int ( 18 x^3 + 2\sqrt{x} + \frac{1}{x^2}) \,dx && \\
\end{flalign*}