Thiery


\begin{flalign*} & \textbf{Questions Mathématiques Complexes avec Variables} && \\ &(a) \quad \text{Calculez:} \\ & \quad \frac{ 9 x^3 - 6 x^2 + 3 x }{x^2 - 2 x + 5 } \div \frac{ 8 x^2 - 4 x }{x^2 - 2 x} && \\ &(b) \quad \text{Résolvez l'équation pour } x: \\ & \quad \sqrt{ 16 x - 9 } + 6 = 3 - \frac{ 2 }{3}x && \\ &(c) \quad \text{Trouvez la valeur de } x \text{ qui satisfait l'équation suivante:} \\ & \quad \frac{ 5 }{ 8 }x - \frac{ 4 }{ 2 } = \frac{ x - 16 }{ 9 } + \frac{ 6 }{ 3 } && \\ &(d) \quad \text{Calculez la dérivée de la fonction suivante:} \\ & \quad f(x) = \frac{ e^{ 2 x}}{x^2} + \ln( 5 x) - \sqrt{ 8 x + 1} && \\ &(e) \quad \text{Calculez l'intégrale définie suivante:} \\ & \quad \int_{ 4 }^{ 2 } (x^3 + 2x^2) \,dx + \int_{ 16 }^{ 9 } (2x + 1) \,dx && \\ &(f) \quad \text{Résolvez le système d'équations suivant:} \\ & \quad \begin{cases} 3x + 2y - z = 6 \\ x - 3y + 4z = - 3 \\ 2x + y - 2z = 2 \end{cases} \\ &(g) \quad \text{Trouvez la solution de l'équation différentielle suivante:} \\ & \quad \frac{ dy }{dx} + 2y = 4x + 3e^{ 5 x} && \\ &(h) \quad \text{Déterminez la valeur de } x \text{ qui satisfait l'équation suivante:} \\ & \quad \tan( 8 x) + \frac{1}{ 4 }\sin( 2 x) = 1 && \\ &(i) \quad \text{Calculez l'intégrale indéfinie de la fonction suivante:} \\ & \quad \int ( 16 x^3 + 2\sqrt{x} + \frac{1}{x^2}) \,dx && \\ \end{flalign*}

Share exercise: