Geburstag Geschank
\begin{flalign*}
& \textbf{Berechnen Sie, indem Sie den Bruch in eine ganze Zahl und einen Rest umwandeln} && \\
& \quad \text{Beispiel } \frac{19}{7} = 2 + \frac{5}{7} && \\
&(a) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(b) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(c) \quad \frac{ 5 }{ 4 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \ && \\
&(d) \quad \frac{ -6 }{ 5 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(e) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(f) \quad \frac{ 9 }{ -15 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
&(g) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(h) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(i) \quad \frac{ 5 }{ 4 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\
&(j) \quad \frac{ -6 }{ 5 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad
(k) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad
(l) \quad \frac{ 9 }{ -15 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\
& \textbf{} && \\
& \textbf{Part 2} && \\
& \quad \text{ - negative zahlen} && \\
&(a) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(b) \quad \frac{ 9 }{ -15 } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(c) \quad \frac{ -15 }{ 8 } = \quad \large\square +
\frac{\large\square}{\large\square} \normalsize && \\
&(d) \quad \frac{ -6 }{ 5 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(e) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(f) \quad \frac{ 9 }{ -15 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
\\&(g) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(h) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(i) \quad \frac{ 5 }{ 4 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
&(j) \quad \frac{ -6 }{ 5 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(k) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(l) \quad \frac{ 9 }{ -15 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\
& \textbf{} && \\
& \textbf{Part 3} && \\
& \quad \text{ - Ein Geschenk meines Vaters :-) } && \\
&(a) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(b) \quad \frac{ 9 }{ -15 } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(c) \quad \frac{ -15 }{ 8 } = \quad \large\square +
\frac{\large\square}{\large\square} \normalsize && \\
&(d) \quad \frac{ -6 }{ 5 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(e) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(f) \quad \frac{ 9 }{ -15 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
\\&(g) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(h) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(i) \quad \frac{ 5 }{ 4 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\
&(j) \quad \frac{ -6 }{ 5 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(k) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad
(l) \quad \frac{ 9 }{ -15 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\
\end{flalign*}