❤️

Geburstag Geschank


\begin{flalign*} & \textbf{Berechnen Sie, indem Sie den Bruch in eine ganze Zahl und einen Rest umwandeln} && \\ & \quad \text{Beispiel } \frac{19}{7} = 2 + \frac{5}{7} && \\ &(a) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (b) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (c) \quad \frac{ 5 }{ 4 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \ && \\ &(d) \quad \frac{ -6 }{ 5 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (e) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (f) \quad \frac{ 9 }{ -15 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ &(g) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (h) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (i) \quad \frac{ 5 }{ 4 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize && \\ &(j) \quad \frac{ -6 }{ 5 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \qquad (k) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad (l) \quad \frac{ 9 }{ -15 } = \quad \large\square + \frac{ \large\square}{ \large\square } \normalsize \quad && \\ & \textbf{} && \\ & \textbf{Part 2} && \\ & \quad \text{ - negative zahlen} && \\ &(a) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (b) \quad \frac{ 9 }{ -15 } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (c) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(d) \quad \frac{ -6 }{ 5 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (e) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (f) \quad \frac{ 9 }{ -15 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ \\&(g) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (h) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (i) \quad \frac{ 5 }{ 4 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(j) \quad \frac{ -6 }{ 5 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (k) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (l) \quad \frac{ 9 }{ -15 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\ & \textbf{} && \\ & \textbf{Part 3} && \\ & \quad \text{ - Ein Geschenk meines Vaters :-) } && \\ &(a) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (b) \quad \frac{ 9 }{ -15 } = \quad \large\square + \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (c) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(d) \quad \frac{ -6 }{ 5 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (e) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (f) \quad \frac{ 9 }{ -15 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ \\&(g) \quad \frac{ 18 }{ 9 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (h) \quad \frac{ -15 }{ 8 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (i) \quad \frac{ 5 }{ 4 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize && \\ &(j) \quad \frac{ -6 }{ 5 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (k) \quad \frac{ 31 }{ 18 } = \quad \large\square \large\square + \frac{\large\square}{\large\square} \normalsize \qquad (l) \quad \frac{ 9 }{ -15 } = \quad \large\square + \frac{\large\square}{\large\square} \normalsize \quad && \\ \end{flalign*}