Ferrary

Squaring
x = \( \sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} + \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}} + \frac{b}{4a} \left(\sqrt[4]{\frac{-3b^2}{12a^2} + \frac{c}{3a}} - \sqrt[4]{\frac{3b^2}{12a^2} - \frac{c}{3a}}\right) \) <br /> <p>a) Izračunaj \(§§V0(-5,5,1)§§(\frac{3}{4}x)^2 - §§V2(-10,10,1)§§\frac{1}{2}x + 7\) za \(x = §§V4(-3,3,1)§§\).</p> <p>b) Riješi jednadžbu \(§§V1(1,5,1)§§(\frac{2}{3}x - 4)^2 = §§V3(-10,10,1)§§(\frac{1}{3}x + 1)^2\) za \(x\).</p> <p>c) Faktoriziraj izraz \(§§V4(1,5,1)§§(2x - 3)^2 - 18\).</p> <p>d) Odredi nultočke funkcije \(f(x) = §§V5(-2,2,1)§§(\frac{1}{2}x - 1)^2 + 5\).</p> <p>e) Dokaži da je funkcija \(g(x) = §§V6(-2,2,1)§§(3x - 2)^2\) otvorena prema gore parabola.</p> <p>f) Pokaži da jednadžba \(§§V7(1,5,1)§§(x - \frac{1}{3})^2 = 16\) ima dva realna rješenja.</p> <p>g) Izračunaj vrh parabole \(§§V8(-3,3,1)§§(x + 2)^2 - 4\).</p> <p>h) Koju vrijednost ima \(§§V9(1,10,1)§§\sqrt{(2x - 1)^2}\) za \(x = §§V10(-2,2,1)§§\)?</p> <p>i) Riješi nejednakost \(§§V11(-2,2,1)§§(3x - 1)^2 \geq 4\).</p> <p>j) Dokaži da je funkcija \(h(x) = §§V12(-2,2,1)§§ (x + 1)^2 - 5x +§§V11(-20,50,5)§§\) otvorena prema dolje parabola.</p>
An unhandled error has occurred. Reload 🗙