Potencije ali sutre


Dobrodošli na Primjer Web Stranice

Ovo je primjer teksta koji kombinira običan tekst s LaTeX notacijom za matematičke formule.

\( \quad f(x)=\displaystyle\log{\frac{x^2-3x+2}{x+1}} { x }^{ 2 } - \sqrt{2 +( x + 1 ) -6 } + \frac{ x + 4 }{ 6 + 5 x } \) = 0

ONDA AJMO OVAKO

Rješi ovo:

Berava

\( (a) \quad \lim_{x\to0} \frac{\sin(x)}{x} \)

Napoj

\( (b) \quad \int_0^{\infty} e^{-x}\ln(x) \, dx \)

Lučevine

\( (c) \quad \frac{d}{dx}(\ln(x))^x \)

Podgrline

\( (d) \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \)

Svinjara

\( (e) \quad \iint_{\mathbb{R}^2} \frac{1}{1+x^2+y^2} \, dx \, dy \)

Obarine

\( (f) \quad \frac{dy}{dx} = xy^2 - \cos(x) \)

Mekinje

\( (g) \quad \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0 \)

Jetrva

\( (h) \quad \lim_{n\to\infty} \sqrt[n]{n!} \)

Francla

\( (i) \quad \int \frac{1}{\sqrt{x^2+1}} \, dx \)

Zaostrog

\( (j) \quad e^{ix} = \cos(x) + i\sin(x) \)