Andy mandy

Kvadriranje
$$\int_1^2 (x + 4)^2 dx $$ 1) Tašo Tahana $$\eqalign{ \int_1^2 (x + 4)^2 dx = \int_1^2 (x^2 + §§V1(1,10,1)§§ §§V0(1,8,1)§§ x + 16) dx \\ &= \left\lbrack {x^3 \over 3} + {8x^2 \over 2} + 16x \right\rbrack_1^2 \\ &= \left\lbrack {8 \over 3} + {8 * 4 \over 2} + 16 * 2 \right\rbrack - \left\lbrack {1 \over 3} + {8 \over 2} + 16 \right\rbrack }$$ 2) Oda ču im ja njima 5 - 6 večeriju ! $$\eqalign{ f(x) = {3x^4} \implies {dy \over dx} = 12x^3 }$$ $$\eqalign{ f(x) = {2x^{-3/2}} \implies {dy \over dx} = -3x^{-5/2} &= -{3 \over \sqrt{x^5}} }$$ 3) Ode srati $$\eqalign{ x = 2t + 1 \implies {dx \over dt} = 2 \\ y = t^2 \implies {dy \over dt} = 2t \\ {dy \over dx} = {dy \over dt} \div {dx \over dt} \\ \implies 2t \div 2 = t }$$
An unhandled error has occurred. Reload 🗙