Šibaj po razlomcima


Zadatak 1 Zadatak 2 Zadatak 3
\( \frac{-24}{8} = \square \square + \frac{\square}{\square} \) \( \frac{-22}{9} = \square \square + \frac{\square}{\square} \) \( \frac{-27}{8} = \square \square + \frac{\square}{\square} \)
\( \frac{8}{4} = \square \square + \frac{\square}{\square} \) \( \frac{10}{4} = \square \square + \frac{\square}{\square} \) \( \frac{8}{5} = \square \square + \frac{\square}{\square} \)
\( \frac{5}{3} = \square \square + \frac{\square}{\square} \) \( \frac{-2}{3} = \square \square + \frac{\square}{\square} \) \( \frac{-1}{4} = \square \square + \frac{\square}{\square} \)

(a) Malo se zagriji:
\( \frac{-24}{8} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{-22}{9} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{8}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{10}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{5}{3} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{-2}{3} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{4}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{37}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{74}{5} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{74}{5} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{45}{10} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{46}{8} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{14}{7} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{14}{7} = \large\square \large\square + \frac{\large\square}{\large\square} \)

\(a^n \cdot a^m = a^{n+m}\) Produkt von Potenzen: Wenn die Basen gleich sind, werden die Exponenten addiert.
\(\frac{a^n}{a^m} = a^{n-m}\) Quotient von Potenzen: Wenn die Basen gleich sind, werden die Exponenten subtrahiert.
\((a^n)^m = a^{n \cdot m}\) Potenz einer Potenz: Ein Exponent wird mit einem anderen multipliziert, wenn er hochgenommen wird.
\(a^n \cdot b^n = (a \cdot b)^n\) Produkt von ähnlichen Potenzen: Wenn die Basen multipliziert werden, wird ein gemeinsamer Exponent herausgezogen.
\(\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n\) Quotient von ähnlichen Potenzen: Wenn die Basen dividiert werden, wird ein gemeinsamer Exponent herausgezogen.
(b) Pa onda malo rebavo
\( \frac{43}{14} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{42}{9} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{-24}{8} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{-22}{9} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{8}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{10}{4} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{5}{3} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{-2}{3} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{4}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{37}{2} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{74}{5} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{74}{5} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{45}{10} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{46}{8} = \large\square \large\square + \frac{\large\square}{\large\square} \)
\( \frac{14}{7} = \large\square \large\square + \frac{\large\square}{\large\square} \) \( \frac{14}{7} = \large\square \large\square + \frac{\large\square}{\large\square} \)

Share exercise: