EL gordo


Upute:

(a) Two jets are flying towards each other from airports that are 1000 km apart. One jet is flying at 240 km·h-1 and the other jet at 340 km·h-1. If they took off at the same time, how long will it take for the jets to pass each other?

The relative speed is 300 km/h. The time taken is given by:

Time = Distance / Speed = 1150 /

Riješi sljedeće jednadžbe (pretpostavi da svi nazivnici nisu nula):

(a)\( 2y - 1000 = 240 \)
(b)\( 2c = c - 340 \)
(c)\( 300 = 1 - 2c \)
(d)\( 4b + 1150 = -7 \)
(e)\( -3y = 4 \)
(f)\( 16y + 2 = -10 \)
(g)\( 12y + 0 = 168 \)
(h)\( 7 + 5y = 70 \)
(i)\( 55 = \frac{5x + 3}{4} \)
(j)\( 5x = 2x + 40 \)
(k)\( 23x - 14 = 6 + 3x \)
(l)\( 12 - 6x + 34x = 2x - 40 - 55 \)
(m)\( 6x + 3x = 4 - 5(2x - 4) \)
(n)\( 18 - 2p = p + 5 \)
(o)\( \frac{4}{p} = \frac{16}{24} \)
(p)\( -(-16 - p) = 13p - 6 \)
(q)\( 3f - 10 = 8 \)
(r)\( 3f + 16 = 4f - 12 \)
(s)\( 10f + 5 = -2f - 3f + 90 \)
(t)\( 8(f - 4) = 5(f - 4) \)
(u)\( 6 = 6(f + 10) + 5f \)
(v)\( -7x = 8(1 - x) \)
(w)\( 5 - \frac{7}{b} = \frac{2(b + 4)}{b} \)
(x)\( \frac{x + 2}{4} - \frac{x - 6}{3} = \frac{1}{2} \)
(y)\( 1 = \frac{3a - 4}{2a + 6} \)
(z)\( \frac{2 - 5a}{3} - 6 = \frac{4a}{3} + 2 - a \)
(aa)\( \frac{2 - 4}{b + 5} = \frac{3b}{b + 5} \)
(bb)\( \frac{3 - y - 2}{4} = 4 \)
(cc)\( 1,5x + 3.88 = 1,25x \)
(dd)\( 1,3(2,7x + 1) = 4,1 - x \)
(ee)\( 6,5x - 4.75 = 7 + 4,25x \)
(ff)\( \frac{1}{3}P + \frac{1}{2}P - 10 = 0 \)
(gg)\( \frac{11}{4} (x - 1) - \frac{11}{2} (3x + 2) = 0 \)
(hh)\( \frac{1}{5} (x - 1) = \frac{1}{3} (x - 2) + 3 \)
(ii)\( \frac{5}{2a} + \frac{1}{6a} - \frac{3}{a} = 2 \)