EL gordo
Upute:
(a) Two jets are flying towards each other from airports that are 1000 km apart. One jet is flying at 240 km·h-1 and the other jet at 340 km·h-1. If they took off at the same time, how long will it take for the jets to pass each other?
The relative speed is 300 km/h. The time taken is given by:
Time = Distance / Speed = 1150 /
Riješi sljedeće jednadžbe (pretpostavi da svi nazivnici nisu nula):
| (a) | \( 2y - 1000 = 240 \) |
| (b) | \( 2c = c - 340 \) |
| (c) | \( 300 = 1 - 2c \) |
| (d) | \( 4b + 1150 = -7 \) |
| (e) | \( -3y = 4 \) |
| (f) | \( 16y + 2 = -10 \) |
| (g) | \( 12y + 0 = 168 \) |
| (h) | \( 7 + 5y = 70 \) |
| (i) | \( 55 = \frac{5x + 3}{4} \) |
| (j) | \( 5x = 2x + 40 \) |
| (k) | \( 23x - 14 = 6 + 3x \) |
| (l) | \( 12 - 6x + 34x = 2x - 40 - 55 \) |
| (m) | \( 6x + 3x = 4 - 5(2x - 4) \) |
| (n) | \( 18 - 2p = p + 5 \) |
| (o) | \( \frac{4}{p} = \frac{16}{24} \) |
| (p) | \( -(-16 - p) = 13p - 6 \) |
| (q) | \( 3f - 10 = 8 \) |
| (r) | \( 3f + 16 = 4f - 12 \) |
| (s) | \( 10f + 5 = -2f - 3f + 90 \) |
| (t) | \( 8(f - 4) = 5(f - 4) \) |
| (u) | \( 6 = 6(f + 10) + 5f \) |
| (v) | \( -7x = 8(1 - x) \) |
| (w) | \( 5 - \frac{7}{b} = \frac{2(b + 4)}{b} \) |
| (x) | \( \frac{x + 2}{4} - \frac{x - 6}{3} = \frac{1}{2} \) |
| (y) | \( 1 = \frac{3a - 4}{2a + 6} \) |
| (z) | \( \frac{2 - 5a}{3} - 6 = \frac{4a}{3} + 2 - a \) |
| (aa) | \( \frac{2 - 4}{b + 5} = \frac{3b}{b + 5} \) |
| (bb) | \( \frac{3 - y - 2}{4} = 4 \) |
| (cc) | \( 1,5x + 3.88 = 1,25x \) |
| (dd) | \( 1,3(2,7x + 1) = 4,1 - x \) |
| (ee) | \( 6,5x - 4.75 = 7 + 4,25x \) |
| (ff) | \( \frac{1}{3}P + \frac{1}{2}P - 10 = 0 \) |
| (gg) | \( \frac{11}{4} (x - 1) - \frac{11}{2} (3x + 2) = 0 \) |
| (hh) | \( \frac{1}{5} (x - 1) = \frac{1}{3} (x - 2) + 3 \) |
| (ii) | \( \frac{5}{2a} + \frac{1}{6a} - \frac{3}{a} = 2 \) |