Šangaj Bruce Lee
<details>
<summary>Otkleni vo:
</summary>
<img src="https://www.mathkiss.com/uploads/vo.jpg" width="300"/>
</details>
<p>1) 计算:\( \sqrt{§§V1(4,16,4)§§} \cdot \sqrt{§§V2(3,9,3)§§} \)</p>
<p>2) 下面哪个表达式是正确的: §§V0(1,10,1)§§ × §§V1(1,100,1)§§?</p>
<p>3) \( \left(-\frac{§§V1(-5,5,0.1)§§}{§§V2(1,5,0.1)§§}\right) \cdot \left(-\frac{§§V1(-5,5,0.1)§§}{§§V2(1,5,0.1)§§}\right) \cdot \left(\frac{§§V3(1,5,0.1)§§}{§§V4(1,5,0.1)§§}\right) \cdot \left(\frac{§§V3(1,5,0.1)§§}{§§V4(1,5,0.1)§§}\right) \)</p>
<p>4) 假设 \( A = \begin{bmatrix} §§V1(2,4,1)§§ & §§V2(3,5,1)§§ \\ §§V3(1,3,1)§§ & §§V4(4,6,1)§§ \end{bmatrix} \) 和 \( B = \begin{bmatrix} §§V5(5,7,1)§§ & §§V6(-1,1,0.5)§§ \\ §§V7(2,4,1)§§ & §§V8(0,2,0.5)§§ \end{bmatrix} \)。计算 \( A + B \) 和 \( A - B \)。</p>
<p>5) 计算积分:
$$\int_{§§V0(0,10,1)§§}^{§§V1(10,20,1)§§} (§§V2(1,5,1)§§x^2 + §§V3(1,5,1)§§x + §§V4(0,10,1)§§) \, dx$$</p>
<p>6) 假设函数 \( f(x) \) 定义为 \( f(x) = x^2 - \sqrt{§§V1(3,15,3)§§}x + \sqrt{§§V2(1,10,1)§§} \),它描述了一个抛物线的形状。确定常数 \( c \) 的值。</p>
<p>7) 计算两颗氘核融合时释放的能量:
$$^2_1\text{H} + ^2_1\text{H} \rightarrow ^3_2\text{He} + n$$
给定质量:
$$m(^2_1\text{H}) = §§V0(2.013,2.015,0.0001)§§ \, \text{u}, \, m(^3_2\text{He}) = §§V1(3.014,3.016,0.0001)§§ \, \text{u}, \, m(n) = §§V2(1.008,1.009,0.0001)§§ \, \text{u}$$
使用 \(1 \, \text{u} = 931.5 \, \text{MeV/c}^2\)。 </p>
<p>8) \(§§V0(-5,5,1)§§x^2 + §§V1(5,15,5)§§x + 9 = §§V2(-5,5,1)§§x^2 + §§V3(-10,10,1)§§x + §§V4(9,90,9)§§\)</p>
<p>9) 写出数字 §§V0(100,10000,100)§§ 的科学记数法形式。</p>
<p>10) 用变量 §§V8(1,15,1)§§ 替换任务中的数字 3 和 12:\(3^b + 3^{b-1} = 12\)。</p>
<p>11) 解线性方程组:<br>
\( \begin{cases} §§V1(4,10,2)§§ x - 2y = §§V1(4,10,2)§§ \\ 2x + §§V1(4,10,2)§§ y = §§V2(7,15,2)§§ \end{cases} \)
</p>
<p>12) 解方程: §§V2(2,10,0.125)§§ \( x^2 + 5x - §§V3(3,15,3)§§ = 0\)</p>
<p>13) 解方程: §§V2(2,10,0.125)§§ \( x^2 + 5x - §§V3(3,15,3)§§ = 0\)</p>
<p>14) 确定常数 \( c \),如果 \( y = x^2 - \sqrt{§§V1(5,20,5)§§}x + \sqrt{§§V2(1,10,1)§§} \)</p>
<p>15) 班级中有 §§V1(20,30,1)§§ 名学生,其中 §§V2(10,20,1)§§ 是男生。班级中男生的百分比是多少?</p>
<p>16) 计算积分 \( \int_{a}^{b} x^2 \, dx \),其中 \(a = §§V1(1,5,1)§§\),\(b = §§V1(6,10,1)§§\)。</p>
<p>17) 扩展分数 §§V0(1,10,1)§§/§§V1(2,10,1)§§,乘以 2。</p>
<p>18) 计算:\( \sqrt{§§V1(4,16,4)§§} \cdot \sqrt{§§V2(3,9,3)§§} \)</p>
<p>19) 计算:\( \sqrt{§§V1(4,16,4)§§} \cdot \sqrt{§§V2(3,9,3)§§} \)</p>
<p>20) 假设 \(f(x) = x^2 + 4x + 5\)。找出常数 \(c\) 的值,使得抛物线的顶点最接近点 \((2, -3)\)。</p>
<p>21) 计算:\( \sqrt{§§V1(4,16,4)§§} \cdot \sqrt{§§V2(3,9,3)§§} \)</p>
<p>22) 乘法: \( (§§V0(3,7,1)§§x) \cdot (§§V1(4,6,1)§§x^2) \)</p>
<p>23) 计算:\( \sqrt{§§V1(4,16,4)§§} \cdot \sqrt{§§V2(3,9,3)§§} \)</p>
<p>24) 如果我将一个数字除以 10,我会把这个数字的零去掉。</p>
<p>25) 计算:\( \sqrt{§§V1(4,25,3)§§} \times \sqrt{§§V2(2,15,2)§§} + \sqrt{§§V1(4,25,3)§§} \times \sqrt{§§V2(2,15,2)§§} \)</p>
<p>26) 如果球的半径是 §§V0(1,5,1)§§,使用公式 4πr² 计算球的表面积。</p>
<p>27) \( \left(-\frac{§§V1(-5,5,0.1)§§}{§§V2(1,5,0.1)§§}\right) \cdot \left(-\frac{§§V1(-5,5,0.1)§§}{§§V2(1,5,0.1)§§}\right) \cdot \left(\frac{§§V3(1,5,0.1)§§}{§§V4(1,5,0.1)§§}\right) \cdot \left(\frac{§§V3(1,5,0.1)§§}{§§V4(1,5,0.1)§§}\right) \)</p>