Dux
$$
\begin{flalign*}
& \textbf{Aufgabe 1 } & \\
a) \hspace{1cm} & \6 X + 3 = 24 \\
b) \hspace{1cm} & \14 X + 11 = 2 \\
c) \hspace{1cm} & \9 X + 3 + -24 = 10 - 3 X \\
d) \hspace{1cm} & \24 X + 3 = -3 \\
e) \hspace{1cm} & \4 X + 3 -3 = 4 X + 3 -3 \\
f) \hspace{1cm} & \1 X + 3 = -3 + -3 X \\
h) \hspace{1cm} & \4 X + 3 + 2X - -3 = 4 X + 3 -3 X + 6 \\
& \textbf{Aufgabe 2} & \\
a) \hspace{1cm} & \24 X^{2}-\frac{1}{ 11 } X^{3} = 0 \\
b) \hspace{1cm} & \6 X^{2}-\frac{1}{ 6 } X^{2} = 0\\
c) \hspace{1cm} & \ binom{21}{x}\sum_{x}^{x+12} ( X+2X - 3 ) \\
d) \hspace{1cm} & \ X^{3} - 3 X - 3 + 24 X^{2}-\frac{1}{ 11 } x^{2} = 0 \\
e) \hspace{1cm} & \ e) \binom{21}{x}\sum_{x}^{x+12} ( X+2X - 3 ) \\
& \textbf{Aufgabe 3} & \\
\left( 3 a-b\right)^2 + \left(b- 6 \right)^2 + \left( - 6 c - 3 \right)^2 = 0 \\
\left( 11 a-b\right)^2 + \left(b- 2 \right)^2 + \left( - 9 c - 3 \right)^2 = 0 \\
\left( -24 a-b\right)^2 + \left(b- 14 \right)^2 + \left( - 3 c - 3 \right)^2 = 0 \\
\left( -24 a-b\right)^2 + \left(b- 14 \right)^2 + \left( - 3 c - 3 \right)^2 = 0 \\
\end{flalign*}
$$